
2.4 Ab initio Modeling of Brittle and Ductile Solids 

In brittle solids, the imposition of external stress results in the 
extension of pre-existing cracks: the stress concentration at the 
crack tip, leads to bond-breaking and cleavage. 
In a ductile substance, the large stress at the crack tip is 
absorbed by generation and motion of dislocations which 
blunts the crack; the net effect is plastic deformation of the 
material but no breaking. 



Capture the atomistic processes responsible for bond 
breaking/cleavage (for a brittle solid) or dislocation 
nucleation/motion (for a ductile solid) 

Successful modeling of physical phenomena that involve 
atomistic processes and their implications for macroscopic 
behavior relies on a combination of methodologies at different 
length scales.  

A simpler approach is to couple phenomenological macroscopic 
theories with first-principles calculations, which determine the 
values of any physical parameters of the phenomenological 
description. 



Macroscopic Theory of Brittle versus Ductile Behavior 
of a Solid 

Consider a crystal cut into two halves parallel to the (hkl) 
crystallographic plane and suppose that one half is displaced 
relative to the other by a vector v. 
 γ-surface (the generalized stacking fault energy surface): 

The change in energy per unit area of the crystal as a function 
of v.  

 The γ-surface is a fundamental material property which can be 
obtained from ab initio calculations. 



The Peierls and Nabarro Equation 

𝑠 𝑥 = 𝑢(𝑥) 



The Peierls and Nabarro Equation 
 Peierls stress is the force needed to move a dislocation within a plane of atoms. 

The magnitude varies periodically as the dislocation moves within the plane. 
 The balance between the stress on the lattice at a position x due to the 

infinitesimal dislocation distribution 𝑢 𝑥  at that point and the force exerted by 
the lattice due to its distortion, which is given by the gradient of the γ-surface:  
 

           
 
 

 
 When this distribution of lattice disregistry   𝑑𝑑 𝑥 = |𝑑𝑢(𝑥) 𝑑𝑥⁄ |𝑑𝑥                   

is moved by a distance v, compute the energy change.  
 The Peierls stress is given directly by the maximum gradient of the γ-surface 

along an extremal path. 

reference 

http://maeresearch.ucsd.edu/~vlubarda/research/pdfpapers/CANU-07.pdf


Ductility versus Brittleness 

 The competing processes which lead to brittle or ductile behavior are the 
extension of the crack by creation of fresh surfaces (brittle response) or the 
generation of dislocations that exert a back stress which reduces the stresses 
by blunting the crack tip (ductile response).  

 In brittle failure, the energy required for an incremental advance of the crack 
front is given by the Griffith criterion: 𝐺 = 2𝛾𝑠, where G is the energy release 
rate and 𝛾𝑠 is the surface energy. 

 Kelly Postulates: A material would be ductile if the crack tip stress exceeded 
the theoretical shear stress before the theoretical tensile stress was reached. 

 RT Model: The onset of ductile behavior occurs when spontaneous emission 
of dislocations at the crack tip became feasible. 

 Modern RT Model: The unstable stacking fault energy (𝛾𝑢𝑠, a measure of the 
nucleation energy for a dislocation) is the maximum energy barrier 
encountered along the extremal path. The criterion for dislocation nucleation 
at the crack tip (ductility) is reached when 𝐺 = 𝛼𝛾𝑢𝑠 with 𝛼~1. 



Ductility versus Brittleness 

 Brittle behavior is the consequence of the condition 𝐺 = 2𝛾𝑠 being satisfied 
before the condition of 𝐺 = 𝛼 𝛾𝑢𝑠. The converse is true for ductile materials.  

 Define a disembrittlement parameter as : D= 𝛾𝑠 𝛾𝑢𝑠⁄ , where 𝛾𝑠 and 𝛾𝑢𝑠 have 
to be established from accurate microscopic calculations. 

 The critical value of the disembrittlement parameter D has been estimated to 
be between 1 (more brittle) and 10 (more ductile). 

 Changes in D due to changes in the microscopic structure or chemical 
composition of a solid will correlate with changes in the solid's tendency to 
behave as a brittle or a ductile substance. 



First-Principles Methods 

 To calculate 𝛾𝑠 and 𝛾𝑢𝑠, we can use slab configurations with multiples of the 
unit cell along the slab direction. 

 Surface energies 𝛾𝑠 can be obtained from the difference between the total 
energy 𝐸𝑡𝑡𝑡 of a crystal cleaved across a given plane and of the bulk as 

2𝛾𝑠 = 𝐸𝑡𝑡𝑡 𝑠𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑛 𝐸𝑡𝑡𝑡(𝑑𝑢𝑠𝑏) 

 Here  𝐸𝑡𝑡𝑡(𝑑𝑢𝑠𝑏) is the total energy of bulk crystal per chemical unit, and  
𝐸𝑡𝑡𝑡(𝑠𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠) the total energy of the given supercell, which contains n 
chemical units. The overall factor of two comes from the fact that each 
supercell has two surfaces. 



First-Principles Methods 
 We consider a periodic supercell containing several units of the ideal crystal 

cell and calculate the total energy as a function of d, the distance between two 
atomic layers separated by the desired cleavage plane in the supercell. These 
energies are fit to a universal energy function  

                              𝑠 𝑑 = 𝐸𝑡𝑡𝑡(𝑑) 𝐴 = 𝑠∞ − 2𝛾𝑠 1 + 𝑓 𝑠−𝑓⁄  

 Here 𝑓 = 𝑑 − 𝑑0 𝜆⁄ , 𝑠∞ is the energy per unit area (A) of the cleaved  
crystal, 𝑑0 is the inter-planar separation in the ideal bulk crystal and 𝜆 is a 
fitting parameter. 

 The unstable stacking fault energy 𝛾𝑢𝑠 can be  obtained from the total energy 
of a supercell containing the fault plane with the two halves of the cell 
displaced in the direction of the fault vector 𝜈 with respect to each other. 



Case Study of Surface Energy on TiO2(111) 

Unit Cell of TiO2 (rutile) Supercell of TiO2 (111) 

1. Create a project 
2. Optimize bulk TiO2 
3. Build the TiO2(111) surface and 

Optimize the surface Structure 

Results: 
1. 𝐸𝑡𝑡𝑡 𝑑𝑢𝑠𝑏, 2𝑇𝑇𝑇2 𝑢𝑛𝑇𝑢𝑠 =

− 4.962782 × 103 𝑠𝑒;   
2. 𝑒(𝑢𝑛𝑇𝑢 𝑠𝑠𝑠𝑠 𝑣𝑣𝑠𝑢𝑣𝑠) = 64.554 𝐴3 
 

Results: 
1. 𝐸𝑡𝑡𝑡 𝑠𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 6𝑇𝑇𝑇2 𝑢𝑛𝑇𝑢𝑠 =

− 1.4883 × 104  𝑠𝑒 
2. Area(𝑠𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠)=ab sin(α) = 
       5.5282sin(113.2) = 28.12𝐴2 

2𝛾𝑠 = [𝐸𝑡𝑡𝑡 𝑠𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑛 𝐸𝑡𝑡𝑡 𝑑𝑢𝑠𝑏 ]× 1 𝐴𝑠𝑠𝐴⁄  

        =[-14883.485+4962.782*6/2]× 1 𝐴𝑠𝑠𝐴⁄   

        =4.861 × 1 28.1⁄  𝑠𝑒/𝐴2=0.298 𝑠𝑒 𝐴2⁄ =173𝑣𝑠𝑒 𝐴2⁄  

    

𝜸𝒔(𝟏𝟏𝟏)= 𝟖𝟖𝒎𝒎𝒎 𝑨𝟐⁄  



The equilibrium shape of a macroscopic crystal of TiO2 using the 
Wulff construction 
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